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Quantum symmetries associated with the Perk-Schultz model 
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Received 28 June 1991 

Abstract. The quantum algebraic struclures associated with a family of R-matrices one 
extracts from the Perk-Schultr model are studied. Starling with the quantum spaces one 
can define from the R-matrices. we show how different duality conditions at the level of 
quantum spaces (Manin’s construction) translate in different quantum groups and quantized 
universal enveloping algebras. 

1. Introduction 

In this paper we study the quantum algebraic structures associated with the R-matrices 
R one extracts from the Perk-Schultz vertex model [l]. Throughout the paper d 
denotes the matrices which are solutions of 

R,,R,,d,* = d,,R,,R,, (1.1) 

where the subscripts indicate the action on the triple tensor product space V@ VQ V 
where V is an n-dimensional complex vector space. The exact solution of this model 
has been recently discussed in [2]. Recent studies (reviewed below) suggest that in 
addition to the usual supersymmetry there exist another symmetry associated with this 
model. It is the purpose of this paper to examine this question. In Manin’s construction 
of quantum groups [3-51 one considers a set of quantum spaces on which the quantum 
group coacts. We shall consider the coaction on a pair of quantum spaces which are 
dual to each other. These quadratic algebras are defined using the matrices R one 
extracts (by a limiting procedure) from the model. Two cases are considered each 
corresponding to a particular definition of duality (at the level of the quantum spaces) 
and rule for the multiplication in the tensor product of two algebras. At the level of 
the quantized universal enveloping algebras this translates into different duality condi- 
tions expressed in terms of the solutions of the graded or non-graded Yang-Baxter 
equations (without spectral parameter). Examination of the two-dimensional case 
suggests that these two constructions lead to two versions of supersymmetry, one of 
which does not have a classical limit; in this simple case, the version of supersymmetry 
which does not have a classical limit is shown to be related to U,(s1(2, C)) at root of 
unity(t=i, i 2 = - l ) .  

All algebras discussed are 2, graded and we shall use some of Manin’s notation 
[5] in describing the grading. The &degree of an element b will be denoted 6; a 
format is an arbitrary sequence (a , ,  a2,. . . , a.) with ai E Z,. Every algebra will be 
associated with a given format by defining the grading (parity) ;! of its elements 2: 
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( i , j = l , n )  as i { = a i + a j ;  we put ;=a ,  andtherefore i:= ;+j.The solutions of (1.1) 
one extracts from these graded vertex models can now be written as follows: 

where e{ is a matrix unit: (e{)% = 8:;5, a is an arbitrary function of 1 and the only 

verified that it satisfies (1.1) for all a( i, j ) .  For a given format (a l ,  a2,. . . , a n ) ,  the 
characteristic and minimal polynomials Ch(A) and m ( h )  of R are as follows: 

Ch(A)=(A - ] ) [" ("+ lJ /21 -1~ ,  ( A  +q2)[n(n-1)/21+Lo, (1.3a) 

m(A)=(A-l)(A+q2).  (1.36) 

Note that given (1.2) one can obtain the statistical weights of this model through 
Baxterization using the following formula 

rss!ri:dinC being thzt i)E-<i. D"P !" the rimp!iCi!y of E,  it is ea&!y 

W(X; q ) =  R(q)+A,A2Xk(q)  (1.4) 

where from (1.3) we have A ,  = 1 and A,= -q2. With the identification q = e'" and 
X = eZis it follows that (trigonometric regime) 

~ ( 0 ;  v ) =  2 , sa ign(a-b)  &@e:+  sin(u+(-l)'e) sin(u)-'ezOet 
" 

e e b  a=, 
o.b=l 

+ ( - ~ ) " ( a ~ ~ s i n ( ~ )  sin(u)-le;Oet. (1.5) 
a + b  

q b = l  

These weights correspond to those of de Vega and Lopes 121 where their function Gob 
is equal to (-I)""~]. 

The quantum algebraic structures associated to the family of solutions (1.2) have 
already been the object of several studies. It is well known that GL,(lI 1 )  is related to ~ 

the solution n = 2  with format ( 0 , l )  which we denote R(0,l);  certain aspects of it , 
have been discussed in [ 6 ] ;  in [7] the differential geometry and quantized universal 
enveloping algebra of GL,(IIl) was presented. In  [SI, the quantum Lie superalgebra 
sl,(M I N) was shown to be related to these solutions. In [SI, a supersymmetric version 
of the R-formalism of the St. Petersburg school [lo] was discussed and, starting with 
R(0, l),  the quantized universal enveloping algebra related to GL,(111) was derived 
as an example. All of these results are examples of quantum deformations of Lie 
superalgehras and of the group GL(lI1). 

Other quantum algebraic structures have been shown to be related to the solutions 
(1 .2 ) .  Starting with R(0, I), Jing et a1 [ l l ]  used the standard (non-supersymmetric) 
version of the R-formalism (the distinction between the two versions ofthe R-formalism 
will be made clear in the following sections) and obtained a quantized universal 
enveloping algebra different from the one obtained in [7,9]. In [ 121, it was shown that 
R(0, 1) is related to the two dimensional highest weight representation of U,(sl(2, C ) )  
with t = i ;  the parameter q that appears in R(0,  1 )  is no longer the deformation 
parameter (since f = i )  but it is the free parameter that characterizes the representation 
(in general the representations of U,(s1(2, C)) at roots of unity are parameterized by 
three parameters). In the case q = i, the two parameter quantized universal enveloping 
algebra U , , ( g l ( K + I ;  C ) ;  L) presented in [13] is also related to the solutions (1.2). 

. .  
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In all of the above studies, the discussion was restricted to the quantized universal 
enveloping algebras associated with the solutions (1.2) (except in the case of GLq(l[l)) .  
The approach used in this paper differs from the ones discussed above in that we begin 
our analysis at the level of quantum spaces for which quantum groups are the symmetry 
transformations. The quantized universal enveloping algebras are objects which are 
then defined in a space dual to that of the quantum group. The symmetries involved 
are then more transparent. Our paper is therefore organized as follows. In section 2 
the quantum spaces are defined. The homomorphisms of two sets Sand  s are examined 
in sections 3 and 4. We then proceed to define the quantized universal enveloping 
algebras in sections 5 and 6. In section 7 the particular case of R ( 0 , l )  is discussed in 
detail. We conclude with a few remarks. Since we intend to draw a parallel between 
two possible paths there will necessarily be some overlap with previous works; these 
will be indicated as we proceed. 

2. Associated quantum spaces 

The quantum spaces associated to the solutions (1.2) are quadratic algebras generated 
by n variables x,, x2,. . . , x. subject to the relations 

[f (R)l*,'xbx, =o (2.1) 

where f is an arbitrary polynomial in R;  it follows from (1.36) that f can always be 
written 

f ( R )  = c,R + c,r (2.2) 

where I is the unit matrix and cI ,  C ~ E  C are to be determined by solving (2.1). There 
are only two solutions that lead to non-zero xi's. The first solution e ,  = -c2 leads to 

1 

x f = o  i = l  

x j x j - ( - 1 ) 4 i )  q -1  xjxj = 0 i < j  

while from the second solution c2= c,q2 we get 
1 

x f = o  i = O  

x . ~ . +  ' I  ( - l ) " ( ' ~ J ) q x . x .  J 1  = 0 i < j .  
* ?  (2.4) 

We first connect with the one parameter version of Manin's [ 5 ]  general linear super- 
group GL,(MIN). For ease of reference we use most of his notation. 

3. GL,(MIN) 

Manin introduces the following two quantum spaces (we consider Manin's one para- 
metric version). A, is a-quadratic algebra generated by n coordinates xI.. . . , x. with 
parity assignment ij = i and commutation rules 

(3.1) 
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Note that the relations defining A, corresponds to the solution (2.3) with a (  [ i) = 
The quadraticalgebra A: is generated by n coordinates (I, . . . , 6" with parity assign- 
ment tk  = 1 + k and commutation rules 

( g k ) ? = O  for k^=o 
tk t1-(- l )  ( h + l l ( i + l l q t l * k  = 0 for k < 1. 

(3.2) 

He defines duality through the following pairings 

(3.3~2) 

(3.36) 

One may check that following this definition A: is dual to A,. The rule for multiplication 
in the tensor product of two algebras is defined to be 

(a@b)(c@d) = (-l)"(ac@bd). (3.4) 
Now consider the n x n matrix Z = ( z { ) y j = ,  E GL , (MIN)  associated to a format 
(a,, a?, .  . ., a.) where M = n-Z:=, ai and N = Z : _ ,  ai. The commutation relations 
satisfied by the elements z{ are determined by requiring that the maps 

(3.5) 

be homomorphism of A, and A: respectively; with the rule (3.4) one obtains Manin's 
relations which we give for ease of reference 

(z")'=O ? + k ^ =  odd 

zi k l  Zi-( - l ) ( t+ l l ( ;+ ' lqzfz:=O ;=odd k < l  

k < l  c 
I =even 

k = even i < j  (3.6) 

zizj-(-l)ffq-'z:z:=O k l  

z j  k k  2, -(-l)"q-'z;z"o - 1 

2"; - ( - 1 )  ( i + i ) ( J + i i q r k z k  I '  = 0 k^=odd i < j  

(-l)w+;lz;z;- ( - 1 )  r(;+i] ZjZl I k = (-l)J-i(q-l - q)z!z? 

( J + h ) ( ? + i ~  I k i < j , k < l .  

i < j , k < l  
1 ,  

z;zl=(-l) ZIZj 

The last relation in (3.6) follows by requiring that q2f -1. 
We stress that the map (coproduct) 

A(z:)= z { @ $  
j = 1  

(3.7) 

preserves the structure described in (?.6) provided one usesthe rule (3.4). We now 
use the graded permutation operator P and define a matrix R 

E=i% [PI:$= 8:8;(-1)fid (3.8a) 
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satisfy the graded Yang-Baxter equations (E;: is equal to The matrix elements 
the coefficient of e $ O e i  in (3.86)) 

i ;sizax( - 1) V+@+8i = fi ik fi 18 Y P E "  74 (- l)P+$+i& (3.9~2) 
+.p,r = I 4,s.7=1 

which can be written 

f i l 2 v l * ~ , l l l l l ~ 2 l v 1 )  = ~ 2 l v 2 3 ~ 1 3 ~ 1 1 ~ . 1 2 v I 2 .  (3.96) 

The use of the matrices (v , , ) : :~%=S::S~~S~(-1)6i6,  provide a means of taking into 
account the gradings while preserving normal matrix multiplication; this way of writing 
the graded Yang-Baxter equation was introduced in [9]. The relations (3.6) can now 
be written as follows: 

riz,FZIF = Fzz,Fz*R z, =ZOI  (3.10) 

The fundamental representation p of GL,(MIN) is as follows: 

p(z { )$  = *$ (3.11) 

indeed substitution of (3.11) into (3.10), and use of the fact that 
A 1  $$#o* i + g = j + p  and ;4 = j p  (3.12) 

leads to the graded Yang-Baxter equation (3.9). Let A = C(z:)  be a C-algebra freely 
generated by the n2variables 2:; the algebra of quantum matrices is defined as follows: 

A i  = C(Z{ ) / IR  (3.13) 

where j R  is the two-sided ideai in A generated by the reiaiions (3.iGj. Noie that if we 
put q = 1 in (3.6), the 2:'s obey the supercommutation rules. is therefore a deforma- 
tion of the ring of polynomial functions on a supermanifold. A few words on related 
works. 

The relation between k in the n = 2  case with format (0.1) and GLJlIl) has been 
discussed in [7]. In [9] the relation (3.10) is given without any connection with a 
particular quantum group and only a few special cases of the solutions (1.2) are 
mentioned; what we have shown here is that starting with Manin's quantum planes 
one is led naturally to this relation. The connection between R as defined in (3.86) 
and Manin's relations (3.6)jsAbelieved to be new. Note that the above construction 
remains true for general a( i ,  j ) .  

We now repeat this construction using a different duality condition and we shall 
keep n general. Due to its similarities with Manin's quantum group we denote this 
structure CXq((MIN); a). 

4. ix&44lN); a) 

We denote by & the quadratic algebra generated by n coordinates x,, x2.. . . , x. with 
parity assignment .Ci = i and commutation rules 

A 

x f = o  for i =  1 

x ' I  .x.- (-l)"'iDq-'xjx; = o  for i < j  
(4.1) 
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where a ( c j )  is arbitrary; the relation (4.1) correspond to (2.3). Next consider the 
quadratic algebra A: generated by n coordinates c', t2,.  . . , 5" with parity assignment 
4' = 1 + 2 and commutation rules 

(4.2) correspond to solutions (2.4). We note that since relations (4.1) and (4.2) were 
obtained by solving (2.1) it follows that no additional relations are needed in order 
to assure associativity of A, and A:. Defining duality through the following pairings, 

( [ J ;  X i )  = s j  (4.3a) 

(4.36) 

it follows that A: is dual to A,. The multiplication rule between tensor products of 
two algebras is defined to be 

( a  0 b)(cO d )  = (acO bd). (4.4) 

- Let us proceed as in the case of G L , ( M ( N )  and consider a matrix Z=(Z:);~-,E 
GL,((MIN); a) with a fixed format and require that the maps (3.5) be homomorphisms 
of A,, and A:; we obtain the following relations: 

( 2 y  = 0 f+ k̂  = odd 

z:"l)"'~'~qzjz: = 0 ;=odd k < l  

z"z]-(-1)"'4."q-'zfz: = o  I =even k < l  ? 

z:z~-(-1)"'u'q-~2~z: I;= even i<j (4.5) 

( -" '" ' 'z~2;-  ( - 1 ) 4 ~ 1 z ! z F  I '  = ( q - l  - q)z ,z j  

.. 
z:2;+(-l)""J'qzLzL , I  = o  k  ̂= odd i<j 

z!z~=( -1)e(4 i )+~tb?)  ' J  zj k 2,  I for i< j ,  k < l  

for i<j ,  k < l .  I k  
^ ^  

We now use the non-graded permutation operator P and introduce the family of 
matrices R 

j . j=,  

R is a solution of the non-graded Yang-Baxter equation 

R , 2 R n R a =  R z R I ~ R , ~ .  (4.7) 

RZ, PZ, P = PZ, PZ, R Z , = Z O I .  (4.8) 

The relations (4.5) can now be summarized as follows: 

The algebra generated by the n2 elements 2'; has the following bi-algebra structure 
" 

A ( Z ) = Z @ Z + A ( z : ) =  Z z:Qz; 
j = ,  

E ( Z ) = I  a E ( Z : ) = ~ f .  
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We stress that the difference in the structures described in (3.6) and (4.5) does not lie 
in the fact that a is kept general (this could have been done in (3.6)) but in the different 
product rule. 

Note that A preserves the structure provided one uses the multiplication rule (4.4). 
The fundamental representation of GLJ(M1N); a) is as follows: 

p(z: )$  = R? 4 (4.9) 

indeed substitution of (4.9) into (4.8) leads to (4.7). Let A= C(&)  be the C-algebra 
freely generated by the n z  variables 2;; the algebra of quantum matrices is defined as 
follows: 

A, = C(z: ) / IR (4.10) 

where In is the two-sided ideal in A generated by the relations (4.8). 
Let us summarize the results obtained thus far. We have considered two sets S=, 

(Aq, A,*) and s= (Aq, A,*) of quantum spacesAassoci$ed to the family of solutions R 
described in (1.2); note that A, =A,  when a( i, i )  = ij and in such a case the two sets 
of planes differ only in the way duality is defined. Examination of the homomorphisms 
of such spaces has led us in the case of the set S to Manin’s GLJMIN) while the set 
s gave us m q ( ( M I N ) ;  a). We have established that m , ( ( M I N ) ;  a) is a bialgebra 
with the multiplication rule (4.4) instead of (3.4) and we suspect that it bas a quantum 
group structure, i.e. that an antipode exists. The determinant also needs to be defined. 
We shall leave such questions for further studies. We note that the relations defining 
GL,(( 111); U = 0) with format (0 , l )  have also been given in [ll].  Finally, it is important 
to mention that the possibility of having more than one symmetry associated with a 
given solution of the Yang-Baxter equation (1.1) has already been pointed out by 
Manin (see example in section 4 of ref [3]) in the context of Yang-Baxter operators 
which he defines [4] as an operator that satisfies (1.1) but for which ( R ) ’ =  1. These 
different symmetries are associated to different Yang-Baxter categories. 
GL,((MIN); a )  is an example of this in the case of what Manin refers to as weak 
Yang-Baxter operators [4], which are operators that satisfy (1 .1)  but for which (R)2  Z 1. 
We now turn to universal enveloping algebras 6, and U, associated to GL,(MIN) 
and a L , ( ( M J N ) ;  a) respectively. A study of the dual spaces will allow us to gain a 
better understanding of the difference between these two symmetries. In particular it 
will be shown that the quantized universal enveloping algebra of m q ( ( l l l ) ;  a =0) is 
related to U,=,(s1(2, C ) ) .  

- 

- 

5. Quantized universal enveloping algebra 6, associated to CLJMIN) 

6, is defined as a subalgebra of the dual to &; 6, is generated by the unit element 
1’ and the generators LF)(  i, j = 1, n )  which are defined by the following duality relations 

(1’; z,z2 . . . Z,) = I@Jk 

(L[*);  z,z,. , , Z,)= l i ! * ) l p . .  . lip 
where L‘”= ( L F ) ) y j = ,  and the unit matrix are both n x n matrices, 

Z. = IO. .  . O Z O . .  .OI 
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( k  tensor products) and d!*’ act non-trivially on factor number 0 and i in the tensor 
product V@(k+ l )  and coincide there with the matrix d‘”’ defined as follows: 

(5.2) 

where k is defined in (3.8). 
In checking the consistency of-definition (5.1) with the relation (3.10) use has been 

made of the properties (3.12) of R and of the fact that d is a solution of (3.9) and of 

I?(+) = i l - l =  E-I 

d 2 3 ? ~ 3 i ~ < ’ ? , 2 d ! ~ ’ ? I , =  i i ~ ) ? 1 3 i ! < ’ ? , ~ d 2 3 ? 2 3 .  (5.3) 
Due to the particular form and properties of d it follows from (5.1) that L‘*’ and L‘-’ 
are upper and lower triangular matrices respectively and that 

L!.;’Li;’= 1‘ ( i = l , n )  (5.4) 

with no summation over repeated indices. From duality condition (5.1) it can be shown 
that the following relations exists among the generators of 6, 

ZP(L(+’@ I ) @ (  L‘”0 I )  = (L (* )@I)P(  L‘”0 I ) P i  ( H a )  

~ P ( L ‘ + ) @ I ) P ( L ( - ’ o I )  = (L.-)O r ) P ( L l + ) @ I ) F i .  (5.56) 

In verifying the consistency of the relations (5.5) with the defining condition (5.1) we 
used the property (3.12) of 

d 1 3 ? 1 3 d 2 3 ? 2 3 d ! < ’ ? 1 2  = d!T’?12d23?23gL3?L3 (5.6~1) 

~ 1 2 ? 1 2 i & ’ ? 2 3 i ! ~ ’ ? I 3  i i ; ’ ? l 3 ~ k 1 ? 2 3 i I 2 ? l 2 ~  (5.66) 

as well as the fact that is a solution of (3.9) and 

Writing (5.5) explicitly we get 

[ LIT’, L\,3] = 0 for all i 

(L!k”)2 = 0 ;+k^=odd 

L ! ~ ) L ~ ~ ) - ( - l ) j j q ~ , ~ ~ l L ~ ~ )  = o  k =even i < j  

,ri;),rl*j Jk - q - l ( - ~ ) ( ~ + ~ ~ ( i + l ) ~ ( ~ l ~ ( ~ l  j k  !k  = 0 k* = odd i < j  

&jL!?)-q(-l) i i  Lil ( + ) L ( * ) = o  ,k 

L$lL\;l - ~ - l ( - ~ ) ( ~ + l ) ( ; + l ) L ( . * ’ ~ ‘ . ~ )  11 ck - - 0 ;=odd k < l  

L ~ ; ) L ! - ) - ( - ~ ) : I  I k  4 -1  Ljk I - l ~ ( + ) = o  8k k =even i < j  

p;lL!-’ I k  - q(-l)“+l”l+l’L‘.-’L(+) ,k tk = 0 k^=odd i < j  

._ I 

. .  

k < l  ? 
I =even 

.. A 

(5.7) 
L ! . ; ’ p  - ( -l)c;q-’Ly’Li;’ 0 i  ̂= even k < l  

LjiiL(+l ,I _ ( - , ) c i + i i c i + i ) q L i : ’ ~ i . ~ )  rk = 0 :=odd k < l  

L~~lL(* l - ( -~ ) (~+ i l [ ’+ i j  Jk Lik ‘*I L, i f )  =o i < j  k < l  

L ~ . ~ ~ L ! ” l ) “ “ l + ~ ~ L ( - ’ L ! + ’ = O  rk Ik ,I k S i < j s l  

L‘+”‘’+i”i+i~Li.-’L!+~ ck ,I 11 8k = o  i s k c l s j  
L\;~L!-) - (-l)‘L+;i(’+i’L~.i)Lj;i 

(-,)G+i) i*) (*) 

Jk 

k < l  ;;+ ,y+ ;; =(-1) (4-1 -q)[L;.;’L::’- Ly’L!.;’] i < j  
Cci+ ijL!;i Ljyi LjI L l k  - ( - I )  

^^ 

= (-l)jl(q-l -q)LiT)L(.*) Jk i < j  k < 1. 
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The co-product A, co-unit E and antipode S maps are defined by the following relations: 

A(L?])=X LM)@L$' = r ,S(L(*])L(*] = 1. 
I 

We stress that the product rule in verifying these maps is (3.4). It follows from (5.1) 
that a representation p of 6,  is 

r \ - v  "(L(.?)P , b - \ - ~  - (P)?. , . V ~  (5.8) 

The relations (5.5) are in agreement with the formulas given in [9] where they are 
discussed in general terms. Here they follow as the existing relations in the space dual 
to that of the one parameter version of Manin's general linear supergroup; in [91, no 
relation to Manin's construction is made and only a few special cases of the-solutions 
(1.2) are mentioned. The above construction remains true for general a ( i ,  j ) .  

r \ - l ,  "(L!+))P , b - - - v ,  - 6" 

6. Quantized universal enveloping algebra U, associated to aq((MIN); a) 

U, is defined as a subalgebra of the dual to A, ; U, is generated by the unit element 
1' and the generators L y ) (  i, j = 1, n) which are defined by  the following duality relations 

(1'; z,z2.. . z,) = r@' 
(L'"'; Z ,Z ,  . , . Z , ) =  R y ' R y ' .  . . R F )  

where L'"', Z, and R(*)  are defined in a way identical to that of section 5 with the 
difference that 

R-' (6.2) R" = R I + )  = PRP 

where R is defined in (4.6). 

and of 
Due to the fact that R is a solution of the non-graded Yang-Baxter equation (4.7) 

(6.3) 

It follows that the definition (6.1) is consistent with the relation (4.8); here, the 
consistency does not depend on particular properties of R. It follows from (6.1) that 
L'+' and L(-)  are upper and lower triangular matrices respectively and that 

L~; )L! ; '=  1' ( i = l , n )  (6.4) 

with no summation over repeated indices. From the definition (6.1) it can be shown 
that the following relations exist among the generators 

R Rl - )R l - ) -  R ( - ) R ( - ) R  
23 12 I 3  - 13 12 2 3 .  

Rp (L '*I@r)p (  L'*)@ r )  = ( L ' * ) @ r ) p (  L '* )@r)pR (6.50) 

RP(L'+'@I)P(L"@I) = ( L ' - ' @ I ) P ( L ' + ' O l ) P R .  (6.56) 

In verifying the consistency of (6.5) with the definition (6.1) use is made of the fact 
that R is a solution of (4.7) and of 

R,,R,,R\;' = R\;)R,,R,, (6.60) 

R I3 R ' - l R [ - ) -  23 I 3  - R'-)R'-'R I3 21 12. (6.66) 



7. Quantized algebra associated to GL,(111) 

Although this algebra has already been given in [7,9] we repeat the exercise for ease 
of comparison. From the equations ( 5 . 5 )  with format (0, 1) and the identification 

we get 

(X*)2  = 0 k , X + k ; =  q X +  k,X+k; = qX' 

k , X - k ;  = q - ' X -  k 2 X - k ; = q - ' X -  (7.2a) 

k2k; - k,k;  x+x-+x-x+=  
4-4- '  
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In terms of the usual Cartan subalgebra generators H , ,  H2 we have that 

k ,  = q H ~ ' 2  kZ= q H z / 2  [H, ,X*]=+2X*  [H2. X i ]  = *2X* (7.26) 

The co-product, co-unit E and antipode S are as follows: 

A(k;)= k:Ok: A(k;) = k;O k;  
A (X+)  = k , O X + + X + O  k2 A ( X - ) = X - @ k ; + k ; O X -  

( 7 . 2 ~ )  
S ( k f ) = k ;  S(k: )=k;  S (X+)=-k ;X+k;  S ( X - ) = - k z X - k ,  

e(kl) = e (k2 )  = 1 

Consider the following transformation 
x+ = -X+( k;k;)1/2q-l/Z 

The algebra described in (7.2) can now be written 

[ H ,  x'] = *2x* 

(x')'=O X + X - + X - X +  = (7.3) 

E(X+) = & ( X - )  = 0. 

x - =  -X-(k;k;)-1/2 4 -1/z K = (k;k,)'/'. 

N - ( H z - H 1 ) / 2  H E  ( H 2 +  H,) /2  K = qNI2 

[ N ,  x'l = 0 
4 N - q - N  

4 - 4-' 

A(x')= K - @ x * + x * @  K 

S( K*) = K S(X*)  = -x* e(,yI)=O & ( K 3 ) = 1 .  

Denoting the two-dimensional representation by (2) ,  we now consider the decomposi- 
tion of the tensor product ( 2 ) 0 ( 2 ) .  The parity of ,y* and K is p ( x ' ) =  1, p ( K ) = O .  
From (5 .8 )  the fundamental representation is 

The states of the representation are 

II)=(;) I -O=(@ 

8. Quantized algebra associated to mJ(lI1); a =0) 

Given the format (0.1) and the identification 
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the equations (6.5) with a = 0 give the following set of relations 

(X')2=0 k , X * k ;  = q'X' k2X'k; = -q'X" 

x+x- -x -x+=  k 2 k - - k , k ;  ' (8.2) 

4-4-' ' 

The co-product, co-unit and antipode are identical to the mappings defined in (72). 
The relations (8.2) are also given in [ l l ] .  Consider the following transformations 
( i 2 =  -1, A = i) 

++, +- and K satisfy the following relations 

( $ ' ) 2 = 0  

and 
(8.4a) 

(8.46) 

with co-product, co-unit and antipode defined as follows: 

A($*) = K - O $ * +  + * O K  
S($*) = -A'+* E ( K * ) = I  E ( $ * )  = 0. 

A(K*)=  K * O K *  
( 8 . 4 ~ )  

It follows from the first two equations in (8.46) that 
K = A H f 2  [H ,  $*I = *2$+. 

With q = e" we have that 
(8.4d) 

k, = qHif2 [H,, X'] = * 2 x *  
(8 .5 )  k2 = k , K 2  = qHd2 

Note that following the change of basis described in (8.3), q no longer appears in the 
relations (8.4); relations (8.4b)-(8.4d) are those of U,(s1(2, C)) with f =  i. Denoting 

tensor product (2)0(2). The parities of $* and K is p ( + * ) =  1, and p ( K ) = O .  From 
(6.8) we have 

H2 = HI + iT7-H [ H 2 , X * ] = * 2 X * ( l + i ~ ~ - ) .  

the turn-dimension.! rPprPsentEtio!? by Q), u.'P "9% cofisider the decnmposition of the 

and 

K = 4 ' / ' ( 0  1 0  i). 

The states of the representation are 
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and 

At this point we want to stress one of the important differences between the two 
quantized universal enveloping algebras. In the case of GL,(111) the algebra described 
in (7.3) has a well known classical limit ( q  -P 1); note that for the two dimensional 
representation K(q  = 1 )  = (h y )  and it follows that the co-product A(,y*) is co-commuta- 
tive. On the other hand, the algebra described in (8.4) is related to U,_,(s1(2, C)) and 
therefore it does not have a classical limit; the deformation parameter i has been set 
equal to i and the parameter q is the free parameter that characterizes the representation 
(see [l l]);  in addition, K does not reduce to unity even when q = l  and therefore 
A($*) is not co-commutative. 

9. Concluding remarks 

The case examined in section 8 suggests that one of the consequences of choosing the 
duality condition (4.3) instead of (3.3) is that the algebra obtained does not have a 
classical limit; the general case remains to be examined. Note that (3.3~1) and (4.3a) 
are both odd pairings. One might consider even pairings with either products (3.4) or 
(4.4); it is not clear at  this time whether this would lead to interesting structures. We 
had mentioned in the Introduction that the algebra presented in [13] is also related 
to the solutions (1.2) in the case q = i. The connection between the algebra presented 
in (6.6) and Lee's algebra remains to be established. Finally let us mention that the 
link polynomials associated with the solutions (1.2) were discussed in [141. 
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Nore added in p r o d  It can be shown that the algebra associated to GL,(IJI)  and a q ( ( l I l ) ;  o=O) are 
isomorphic as algebras but differ in their coproducts and antipodes (they have different Hapf structures). 
See [ IS]  for details. 
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